BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 46, 1009-1010 (1973)

Photochemical Type II Elimination of Diisobutyl Trichloromethylphosphonate*

Yoshio Ogata, Yasuji Izawa, and Toshiyuki Ukigai Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya (Received August 12, 1972)

The type II photo-elimination of carbonyl compounds containing γ -hydrogen to form olefins and degradated carbonyl compounds via a cyclic transition state is well known.¹⁾ However, little information is available on the analogous photochemistry of phosphoryl group. In view of the strongly polar character of P⁺-O⁻ bond in ordinary phosphorus compounds, no absorption of the P=O group appears in the near UV region.²⁾

We reported previously that no reduction of the phosphoryl portion occurred in photoreduction of carbonyl group of dialkyl β -ketophosphonates (I) to β -hydroxyphosphonates (II) (Eq. (1)). The quantum yield for disappearance of ketones were 0.6-0.7.3)

$$RCOCH2P(O)(OR')2 \rightarrow RCH(OH)CH2P(O)(OR')2 (1)$$

a, $R = CH_3$, $R' = C_2H_5$ b, $R = C_2H_5$, $R' = C_2H_5$ c, $R = C_2H_5$, $R' = (CH_3)_2CH$

The extent of $p\pi-d\pi$ character of the P=O bond may be determined by the overlap integral and the electron affinity of the bonded atoms at phosphorus. Thus, the electronegativity of substituent on the phosphorus atom may exert a considerable effect on the $p\pi-d\pi$ overlap integral and hence on its bond energy.⁴⁾ Electron-withdrawing groups on phosphorus compete

with a double-bonded oxygen atom to attract electron, resulting in a stiffer P=O bond and a higher frequency.⁵⁾

The values of bond orders of some phosphoryl compounds have been reported, $e.\ g.$, $P(O)Br_3$: 1.92, $P(O)Cl_2$: 1.95, $P(O)(CF_3)_3$: 2.00, $P(O)FCl_2$: 2.05, $P(O)F_2Cl$: 2.11, and $P(O)F_3$: 2.22.4)

Consequently, the absorption spectrum of the phosphoryl group is expected to appear in a near UV region, if a strongly electron-withdrawing group is present on phosphorus. In fact, diisobutyl trichloromethylphosphonate (III)⁶⁾ shows a new absorption (shoulder) at $\lambda_{\max}^{n-\text{hexane}}$ 253.7 nm ($\varepsilon \sim 2$). The present paper reports on photochemical type II decomposition of III to give the corresponding half ester and isobutylene.

A solution of III (1.5 g, 0.25 M) in *n*-hexane was irradiated with a low-pressure Hg lamp in a quartz tube for 60 hr and the photoproducts were separated by column chromatography, giving colorless crystals (IV), mp $104-105^{\circ}$ C, in an 11% yield and viscous liquid (V)⁷⁾ (0.18 g). The IR spectrum of IV showed strong bands of P-OH at 1640 and 1110 cm⁻¹. The mass spectrum showed the fragment ions m/e 83 [34%, HP+(OH)₃], 137 (22%), 199 (12%), and 56 (100%, $C_4H_8^+$), although the expected parent peaks did not appear. Accurate mass numbers of

^{*} Contribution No. 167.

¹⁾ For comprehensive reviews see (a) N. J. Turro, "Molecular Photochemistry," Benjamine, New York, N. Y. (1965), p. 154; b) J. G. Calvert and J. N. Pitts, Jr., "Photochemistry," John Wiley & Sons, New York, N. Y. (1966) p. 377; c) N. C. Yang in "Reactivity of the Photoexcited Organic Molecule," John Wiley & Sons, New York, N. Y. (1967) p. 145.

²⁾ R. P. Buck, S. Singhadaja, and L. B. Rogers, *Anal. Chem.*, **26**, 1240 (1954).

³⁾ H. Tomioka, Y. Izawa, and Y. Ogata, Tetrahedron, 24, 1501 (1969).

⁴⁾ O. P. Craig, A. Maccoll, R. S. Nyholm, L. E. Orgel, and L. E. Sutton, *J. Chem. Soc.*, **1954**, 332,

⁵⁾ N. B. Colthup, L. H. Daly, and S. E. Wiberley, "Introduction to Infrared and Raman Spectroscopy," Academic Press, New York, N. Y. (1964) p. 298.

⁶⁾ III: bp 109—110°C (1 mm); IR (film) 1280 (P=O), 1020 (P=O-C), 765 (P=C), 545 (C=Cl), 1370, and 1395 cm⁻¹ (CH-(CH₃)₂); NMR (CDCl₃) isobutyl methyl H (δ 1.10, d, J=7.5 Hz), isobutyl methine H (δ 2.11, m), and isobutyl methylene H (δ 4.20, t, J=6.6 Hz); mass m/e, P: 31.0 (20%), fragment ions: 199 [55%, Cl₃CP+(OH)₃], 137 (60%, P+(OH)(O)(OC₄H₂)], 117 (15%, CCl₃+), 83 [10%, HP+(OH)₃], and 56 (100%, C₄H₈+).

⁷⁾ Although V showed similar IR and NMR spectra to that of III, its structure is not clear. V is not identical with III because of its mass spectrum, M+ 500,

ions at m/e 137 and 199 were 137.037 and 198.889, respectively. Hence, the former is due to $P^+(O)(OH)-(OC_4H_9)$ (calcd 137.036), the latter to $C^{35}Cl_3P^+(OH)_3$ (calcd 198.899). In the mass spectrum of III, no peak corresponding to $Cl_3CP^+(OH_2)(OC_4H_9)$ ion was observed. In support of this, a β -scission to P=O group under electron impact is knwon.8)

$$\begin{array}{ccc}
O & OH^+ \\
RP(OR')_2 & \xrightarrow{\text{electron impact}} & RP-OH & (2)
\end{array}$$

Thus it is certain that $\text{Cl}_3\text{CP}^+(\text{OH})_3$ ion for IV is produced via electron impact fragmentation of $\text{Cl}_3\text{CP}(\text{O})(\text{OH})(\text{OC}_4\text{H}_9)$. On the basis of this fact as well as in spectroscopic property, the photoproduct (IV) was identified to be $\text{Cl}_3\text{CP}(\text{O})(\text{OH})(\text{OC}_4\text{H}_9)$. If IV is produced via a type II cleavage of III, isobutylene should be simultaneously formed as a photoproduct. In fact, it was isolated by means of glpc using di-n-butyl maleate- β , β' -oxydipropionitrile on C-22.

Thus, it is probably valid to write the process for the photochemical cleavage of III in analogy with the type II cleavage for ketones.

$$\begin{array}{c} O \\ \subset \\ Cl_3CP \left(OCH_2CH \stackrel{CH_3}{\swarrow}\right)_2 \stackrel{h\nu}{\longrightarrow} Cl_3C-\stackrel{P}{P} \stackrel{C}{\searrow} CH_2 \\ III \qquad \qquad OCH_2CH(CH_3)_2 \end{array}$$

$$\begin{array}{c}
\text{OH} \\
\xrightarrow{\text{"type II" cleavage}} & \text{Cl}_3\text{C-P=O} + \text{CH}_2\text{=C(CH}_3)_2 & (3) \\
\text{OCH}_2\text{CH(CH}_3)_2 & \text{IV}
\end{array}$$

Indeed, no decomposition was observed in 54 hr irradiation of dimethyl ester, $Cl_3CP(O)(OCH_3)_2$, in which a six-membered transition state for hydrogen abstraction is impossible. No isobutane was detected in the photodecomposition of III.

⁸⁾ a) J. L. Occolowitz and G. L. White, Anal. Chem., 35, 1971 (1963); b) T. Nishikawa, Tetrahedron, 22, 1383 (1966).

⁹⁾ Bp 120—126°C (12 mm); IR (film) 1280 (P=O), 1185 (P–O–CH₃), 760 (P–C), and 555 cm⁻¹ (C–Cl); NMR (CDCl₃) methyl H (δ 4.07, d, J=10.8 Hz).